The author has mado somo inrestigations upon the structure of the skin in fishes which must lead to great modifications in our ideas, especially of the construction and growth of the scales.

Fishes are generally sticky to the touch-a phenomenon which M. L. Agassiz ascribed to a mucosity secreted by peculiar glands. Leydig, however, showed that no mucus-gland exists at the surface of a fish. The so-called mucosity is, in fact, only the most superfieial layer of the epidermis. In the terrestrial Vertebrata the most superficial layers of the epidermis become hardened to form the stratum corneum which scales off at the surface. In fishes the superficial cells of the epidermis, instead of hardening, absorb water, become softer and softer, and constitute the mucous covering of the surface, which is easily removed. The corium, placed immediately beneath the epidermis, is formed essentially of two crossed systems of connective bundles. It contains numerous pouches, in each of which a scale is lodged.

It is well known that the ctenoid and cyeloid scales present numerous concentric strix, which M. Agassiz interpreted as the margins of superposed layers forming the scale. This opinion, which is still generally accepted, is, however, quite erroneous, as has been clearly shown by Dr. Salbey by means of rertical sections. The strix are due to a series of irregular crests, which all belong to the superficial layer of the scale. The deeper and much thicker layer is formed by a series of superposed lamellæ of two substances. The thickest lamellæ are colourless and brilliant; the thimer ones are jellowish and but slightly transparent; the former are calcaroous, the latter are composed of a sort of cement destitute of limesalts. The calcarcous lamellæ being generally thicker in old individuals than in the young, it is probable that their increase in thickness is caused by a gradual incrustation of the interposed layers of cement. The growth of the scale is explained by the fact, that a deposit of calcareous salts is formed periodically in the part of the corium which is directly applied against the lower surface of the scale. This incrusted layer becomes for a time the lowest lamina of the scale. Then a layer of cement is deposited between this calcareous lamina and the corinm : this alternate formation of calcareous and non-calcareous layers is repeated a great many times.

Besides the concentric lines, the scales present striæ which radiate from the centre to the periphery. 'These are the "longitudinal canals" of Mandl, the "fan-like furrows" of M. Agassiz, and the "sutures" of M. Peters. The name proposed by M. Agassiz (sillons en éventail) is perhaps the best. inasmuch as the strix certainly correspond to furrows of the surface. But from the bottom of these furrows truc partitions of unincrusted cement start, which traverse the whole thickness of the scale and divide it into a certain number of segments. By their partial inerustation these rays of cement may assist in the ridening of the scale. At the centre of the system
of concentric lines of the surface of the seate there is a region of peculiar appearance．Which M．Agassiz designates the＂centre of growth，＂and Mandl the＂focus，＂by which he understands＂focus of mutrition，＂M．Agassi\％regards this region as the oldest portion of the scale，the layers of which have been wom away．As recards the first point，that of age，he is undoubtedly right：as regards the second，this is not the case．If the asperities are less prominent in this part of the seale，it is because they date from a period when the fish was smaller．－Archive fïr Auct．Phys，umd wiss．Meclizin， 18（is，1．プン9；Bibl．Uniu．Norember 15， 1869 ：Bull．Sci．pp．276－ 2 ごふ。

> On the Anatomy of the Alcyonaria.
> By MM. G. Povcnet and A. Mrèrre.

The anatomical systems of most of the inferior animals have not eren yot been clearly determined．The existence of distinct mus－ cular elements in particular，long admitted mpon the testimony of the movements which one sees executed by the animals，has only been demonstrated quite recently in the Actinice by M．Schwalbe．As to the Aleyonaria，M．C．Genth has indeed deseribed the museles of Solenogorija tubulosa：but his deseription is very incomplete，and even it does not stand in any relation to what we have been able to make out of the muscles of two other Alcyonaria，Alcyonium digitatum and $A$ ．palmatum．

The museular elements are pale fibres，soft during life，about 0.002 millim．in diameter when they are at the maximum of contraction， but usually much more slender．They are finely granular，without nuclei，and have distinct outlines．They may easily be isolated，at least in part of their length，which is variable．These museular fibres are，by their appearanco and size，very like those of the Nemertea．These fibres，in the Alcyonaria，are arranged sometimes in sheets，and sometimes in thicker or thinner bundles，which form true museles，having sometimes very definite insertions，and needing to be described and named as so many primary organs．

1st．Longitudinal Muscles．－They are eight in number，and corre－ spond to each of the mesenteroid laminx，which they themselves assist to form．They extend from the peristome far into the conen－ chyma（sarcosome of M．Lacaze－Duthiers），which we find still very distinct upon the walls of the wide canal，which forms a con－ tinnation of the bodies of the polypes（grossere Suft－Kanile of Kölliker）．

2nd．Thin eanal presents throughout，beneath the epithelium which lines it，a layer of circular or transverse fibres，corering and crossing at right angles the fibres of the longitudinal muscles lying against the substance of the conenchyma．These fibres，retaining their direction，give form to the mesenteroid laminæ；and they are to be found still，under the same conditions，even on the wall of the perigastric cavities．

Brd．Sphincter．－This musele occupies the peristome．It is formed

